Lewis Diagrams Lewis Structures Lewis Dot Diagrams Lewis Dot Structures All the same thing! :)

A way to figure out the structure of molecules

- You have to know the \# of valence electrons for EACH atom in the molecule!
- From the periodic table group number!
- 1A = 1 valence electron
- $2 \mathrm{~A}=2$ valence electrons
- $3 \mathrm{~A}=3$ valence electrons
- etc...

Practice...

-Lithium

- 1 valence
- Magnesium
- 2 valence
- Nitrogen
- 5 valence
"8 is great!"
- many things want 8 valence e - = "full shell" or "octet"
- Neon
- 8 valence

Why valence electrons and not all electrons?

-Because the valence electrons are the only ones on the outside! They are available for bonding. They are "accessible"

Octet "Rule"

- More like a suggestion than a "rule"
- Most elements want 8 valence electrons if possible
- ANYTHING can break the "rule" if it has to!
- Common exceptions - things that break the rules more often than they follow the rules

Element	H	B	P	S
\# of Valence e- it is ok having	2	6	10	12

-Memorize them!

Drawing Single Atoms

Li $\mathrm{Be} \cdot{ }^{\circ}$

- ${ }^{\circ}$ 。
- N:

$\because \stackrel{\circ}{F}:$
:Ne:

Drawing Anions - a change has been made!

$\mathbf{O}^{2-} \quad$ Oxygen normally has: 6 v.eOxide
 Change: +2 v.e- (two extra) New Total: 8 v.e-
 $$
\left[\begin{array}{c} \because 0 \\ \because \circ \end{array}\right]^{2-}
$$

Drawing Anions - a change has heen made!

$\mathbf{N}^{3-} \quad$ Nitrogen normally has: 5 v.e-
Nitride
Change: +3 v.e- (three extra) New Total: 8 v.e-

$$
\left[\mathrm{Ni}_{0}^{\circ}\right]^{3-}
$$

Drawing Cations - a change has been made!

Drawing Ionic Compounds -
Draw the ions next to each other! That's it!

Sodium

Chloride

 NaClMagnesium Oxide MgO

$$
[\mathrm{Na}]^{1+}\left[\begin{array}{c}
\bullet \mathrm{Cl}_{\bullet}^{\circ} \\
01-
\end{array}\right]^{1-}
$$

$$
[\mathrm{Mg}]^{2+}\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]^{2-}
$$

Drawing Ionic Compounds -

Draw the ions next to each other! That's it!

Calcium Fluoride MgF_{2}

$$
[\mathrm{Mg}]^{2+}\left[\begin{array}{c}
\infty \\
\vdots \\
\vdots \\
0
\end{array}\right]^{1-}\left[\begin{array}{c}
\infty \\
\vdots \\
0 \\
0
\end{array}\right]^{1-}
$$

Don't waste all your time! Don’t draw two fluorides!
Just use subscripts! ©

